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This is analogous to the Frenkel variational principle of quantum mechanics, 
which is (Corson 1951) 

s d y  6$*(y, 7) i - - H $(y, 7) = 0. 

It is important to observe that these variational equations cannot, in general, 
be rewritten in the form 

6(some quantity) = 0. 

This does not necessarily detract from their usefulness however. For example, 
the Frenkel variational method provides the simplest derivation of the time- 
dependent Hartree-Fock theory, which is of great importance in the theory of 
excited states of many body systems. It is also important to note that the 
variational method can be formulated for many other problems. For example, the 
variational equation for the problem of the randomly forced Burgers equation 
is just 

[:r 1 

and a similar equation for Navier-Stokes turbulence can be written down if 
the pressure terms are removed in the usual way. Returning to the diffusion 
problem, one can alternatively write down a variational equation for the particle 
position p(7): 

with €Jt') = x'. G is then found by calculating 6{x - E,(t)}. 

(85(7). E(7) - UW), 7)i) = 0, 

4. Example of the variational approach 

taken as functional polynomials in the velocity field: 
Let us apply the first variational method with the trial functionals f and g 

g(Yj7) = g'O'(Y,7)+ d71 d3yig~1'(y,7;y,,7,)U~(yi,7i)f ...+S...Sg'")L: U...U. s s  
The functions f(O), f(Q, . . . , f("); g(O), g(l), . . . , 9'") are arbitrary functions except for 
the restrictions 

f'O'(Y,t) = S(Y -x)Y 
g'O'(y, t ' )  = S(y - x'), 

fi?(y, 7; yl, T ~ )  = 0 except for t > T~ > 7, 

g&)(y, 7; yl, T ~ )  = 0 except for 7 > T~ > t', 

and so on. The last two conditions reflect the fact that the motion of the particle 
in a given time interval cannot depend on the velocity outside that interval. 



474 R. Phythian, 

Substituting these trial functions into the variational expression and seeking 
a stationary value with respect to variations of the arbitrary functions 
f@), f(l), . . . gives the .n equations 

and so on. 
Similar equations for the f’s are obtained by equating to zero the coefficients 

of the variations Sg. These are not needed, however, since the stationary value 
is just (g(x, t ) ) .  It may be seen that, for the case when U is Gaussian, the above 
equations are equivalent to the nth order equations of the Wiener-Hermite 
method since the trial functionals above could be rewritten as sums of Wiener- 
Hermite polynomials of a white-noise function. 

Let us now consider the simplest such approximation, obtained by taking 
f(O), f(”, g(O), g(1) as the only non-zero functions, for the case when U is Gaussian, 
homogeneous and stationary with zero mean. The equations are 

where R is the correlation function of the velocity field. Integrating the second 
equation with respect to 7 from t‘ to 7, differentiating with respect to ya and 
putting y, = y, T~ = 7 gives an equation which enables g(l) to be eliminated from 
the fist  equation to give 

The stationary value of I is seen to be g(O)(x, t ) ,  so that this is our approximation 
for G, and we have fmally Saffman’s equation 

a2G(x, 7; x’, t’) 
ax, axl 

a - G(x, t ;  XI,  t ’ )  = 
at 

An approximation for the two-particle propagator can be derived in the same 
manner. The trial functionals are then of the form 

do’(Y1, YZ; 7) + a71 d3z1g&Yy1, Y,; 7\21, 71) ua(Z1, 71), s s  
with a similar form for f. Substituting in the expression for J and seeking a 
stationary value gives equations for 9‘0) and g(l) as before. For the special case 
considered above, the equation for G is obtained as 
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In  the limit when t - t ’  is large compared with the correlation time of the 
velocity field the equations assume, for the isotropic case, the forms 

(i - DO:) C ( x ,  t; x’, t ’) = 0, 

and 
r m  

It is easily verified that exactly the same results follow from the second 
variational principle using the same trial functionals. In  fact the two methods 
give the same results when the trial functionals depend linearly on the variable 
quantities. It will now be made plausible that the approximation obtained above 
is exact in a certain limiting situation. 

5. Relation of the approximations to perturbation theory 
As before, the velocity field is assumed to be Gaussian, homogeneous and 

stationary, with zero mean. I n  order to generate solutions of the problem in the 
form of perturbation series it is convenient to modify the previous definitions of 
9 and G by incorporating a step function in time. We now take 

where 

The equation satisfied by 9 is the same as before except for the addition of the 
term 6 ( x  - x’) 8(t - t’) to the right-hand side. The equation may be rewritten as 

Introducing the notation Go(x, t ;  x‘, t’) for the first term on the right-hand side 
gives 

Iteration now generates a perturbation series for 9 and, by taking the expectation 
value, a series for G is obtained. This may be represented in diagram form as in 
figure 1, where a thin line represents Go, a thick line G, a wavy line represents the 
correlation function R, and a dot denotes spatial differentiation. The general rules 
will be apparent from the expression corresponding to the last diagram of figure 1 : 

/dtl/d3x1 . . . / d t 4 / ~ 3 ~ 4 R a ~ ( ~ l - x 3 ,  t1-t3)R,,(x,-x4,t2-t4) 

aGo(x1, ti; X2, t z )  aGo(x2, t2; X3, t3) aGo(X3, t3 ;  X4, t 4 )  aGo(x4, t4; X’, t ’ )  
8x4, x Go(% t ;  x1, tl)  

8% ax,, ax,  
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FIGURE 3 

The terms of the series are simplified somewhat by working in terms of the 
Fourier transforms with respect to spatial co-ordinates. If we define 

~ ( x ,  t ;  x’, t ‘ )  = d3p exp { - ip . (x - x’)} d(p, t - t ’), f 
then, to obtain the series for G, we retain the same diagrams as before. Each 
line (both straight and wavy) now carries a wavenumber which is conserved at  
the junction points. A thin line carrying a wavenumber p between two points 
with time co-ordinates t ,  and t ,  represents g,,(p, t, - t,), i.e. ( 2 ~ ) - ~  6(tl - t,). A wavy 
line with wavenumber k between t, and t, corresponds to R,,(k, t, - t,). A junction 
point into which goes a straight line with wavenumber p gives a factor ipcc. 
Again the general rules are made apparent by giving an example. Figure 2 
represents a contribution to g(p, t - t’) given by 

i4 dt1 ... dt4 d3k d3k’6(t-t1)6(tl-t,)6(t,-t3)6(t3-t4)6(t4-t’) 

x Rorj(k, t,-t3) i i , ,(k’,t,-t,)~a(~-k’)8 ( P - ~ ) Y P ~ *  

s sss 
Consider now an approximation for G obtained by summing the infinite sub- 

series of diagrams shown in figure 3. This series is summed by the equation shown 
in figure 4, which corresponds to - - 

PG(x ,  t,; x’, t’) 
G(x, t ;  x’, t’) = 6 ( ~  - x’) O ( t  - t’) + dt1 dt2 R,p(O, t ,  - t 2 )  s s  ax, axp 

t >t l>t2>t ’  
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This is easily seen to be equivalent to the equation derived above by the varia- 
tional method (for t > t’). The particular terms summed by this approximation 
have the interesting property that they are the dominant terms in a certain 
limiting situation. Assume that the correlation function RaB(x, t )  is appreciable 
only when x < 1 and t < r .  By denoting the root-mean-square velocity by v and 
considering the case when t-t’ = T 9 r it is seen that the contributions to 
G(p, T )  (for pl  of order 1) given by the ‘terms’ in figure 1 are of order 

I, v%T/12, v4r2T2/14, v4r3T/14, v4r3T/14 

respectively. It is clear that the ‘terms’ to any order of the expansion, which 
give the maximum power of T are those which contain the maximum number of 
junction points capable of moving independently between t’ and t .  These are 
just the ‘terms’ of the subseries considered. The other ‘terms’, to any order, 
give lower powers of T since the number of independently moving junction 
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points is smaller. This can best be seen by regarding the wavy lines as elastic 
strings which cannot stretch further than a length 7. 

Thus the expansion is dominated by the terms of the subseries in the limit 
when T/r  tends to infinity and ( v T / Z ) ~  tends to zero in such a way that the product 
remains finite. If we are prepared to make the assumption that the asymptotic 
form of G is given by the sum of the dominant terms in the expansion then the 
equation derived above for G should apply in this limit. It may be noted that, 
in recent years, a similar approach has been used in the theory of non-equilibrium 
statistical mechanics (Prigogine 1962), the case considered here being analogous 
to the weak-coupling limit. An alternative derivation of this result has been given 
by Kraichnan (1968). 

The same approach may be made for the two-particle propagator. The per- 
turbation expansion follows by substituting the series for the 9 s  into the defining 
equation and taking the expectation value. The ‘terms ’ in this case, up to second 
order in the correlation function, are as shown in figure 5 .  

We now take t, z t ,  and t i  M t; with t ,  - t; = T large compared with 7. Applying 
the same considerations as before to select those ‘terms ’ which give the highest 
power of T in any order gives the subseries consisting of ‘terms’ 1-6, 11-14, 17 
and 19 from the above set. By representing by a thick line the approximation 
derived above for the single-particle propagator we see that the subseries consists 
of ladder ‘terms’ as shown in figure 6. This is summed by the integral equation 
shown in figure 7, which, written in full, is 

where G now represents the approximation for the single-particle propagator. 
Setting t, = t, = t ,  t i  = t; = t‘ and using the fact that t - t‘ is large, we may put 
t ,  = t4 in the integrand except in the term R, thus obtaining 

G(x,, t; x2, t [  xi, t ‘ ;  x;, t’) = G(x,, t ;  x;, t’) G(x,, t ;  x;, t’) 

+ d3x3 d3x4 dt3 G(x,, t ;  x3, t3) G(x,, t ;  x4, t3) J S S  
X r,8(X3-X4)G(X3,t3;X4,t3JX;,tf;X~,tf) .  
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Differentiating with respect to t and using the fact that t - t’ is large gives the 
same equation as derived before by the variational method. 

The exactly soluble situation, where the velocity field has a correlation func- 
tion which is a delta function in time, is included as a special case of the above 
limit and corresponds to T = 0. It may also be easily verified that when the 
velocity field is uniform the exact propagators satisfy the above equations in the 
limit of large time difference. This corresponds to the case 1 = 03. 

The next approximation, obtained by using trial functionals which are quad- 
ratic in U ,  may easily be written down. The equations are rather lengthy and 
will not be reproduced here. It can be shown that they correspond to  the sum- 
mation of a larger subseries of the perturbation expansion, though whether the 
terms in this case have any special significance is not known. 

6. Discussion 
T t  has been shown that variational methods can be formulated for the problem 

of diffusion in a random velocity field and that these methods can be used to 
obtain approximations. The particular example considered has shown that, even 
with simple trial functionals, one can obtain approximations which are clearly 
not complete nonsense although perhaps of limited validity. 

The question arises of whether one can find better approximations by these 
methods. As far as numerical calculation is concerned this would appear to be 
straightforward. One could, for example, take trial functionals in the form of 
functional polynomials in which the kernels g(@, g(1) etc. are given functions con- 
taining many variable parameters. The stationary value for variations of these 
parameters then gives the approximation. This clearly amounts to a variational 
method of solution of the truncated Wiener-Hermite equations and might prove 
useful since the solution of these equations by more direct methods is difficult. 
The derivation of analytical approximations which are sufficiently simple 
to be useful has proved more difficult and it has not been ascertained whether 
approximations like ‘direct interaction’ (Kraichnan 1961) can be derived in 
this way. 

One shortcoming of the approximation based on linear trial functionals con- 
sidered above is its failure to ensure the positivity of G although other realizability 
conditions are satisfied. This was pointed out by Saffman and clearly arises from 
the fact that a linear functional of the velocity field can take on both positive and 
negative values. This would suggest that a better approximation might be 
obtained with simple trial functionals whichare positivedefinite for all realizations 
of U ,  such as squares or exponentials of linear functionals. The resulting equa- 
tions, however, turn out to be very complicated. The simplest alternative 
approximation which has been derived by these methods is that obtained from 
the variational equation for the particle position g(7). Taking the one-dimensional 
case for simplicity and assuming that the particle starts from the origin at time 
zero, the variational equation is 
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We take a linear trial functional 

R . Ph yt hian 

&) = g(7Iy1, 71) Wyl, T ~ )  d y 1 k  s 
where g(T(y,, T ~ )  is non-zero only for T > 71 > 0. It will be observed that this trial 
functional gives the exact solution for uniform velocity fields. The resulting 
equation for g is 

(477h(t))-+ exp { - ~ 2 / 4 A ( t ) ) .  

The above nonlinear equations must be solved in order to determine h(t). 
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